吸附法被較多應(yīng)用于VOCs 的分離和回收/銷毀,但吸附劑利用率較低,設(shè)備維護(hù)成本較高,對(duì)于吸附油煙 VOCs 的應(yīng)用案例較少。因此,選擇合適的吸附劑對(duì)有效吸附油煙 VOCs至關(guān)重要。一種理想的去除VOCs的吸附劑應(yīng)具有:高吸附容量、熱穩(wěn)定性強(qiáng)以及高疏水性等優(yōu)良性質(zhì)。既保證了循環(huán)吸附再生的使用,同時(shí)克服常見(jiàn)的水蒸氣的競(jìng)爭(zhēng)性吸附。
2.1.2吸收法
吸收法的凈化效果往往跟吸收液的選擇和吸收設(shè)備有關(guān)。肖瀟采用鼓泡吸收的方式,考察合適配比的氟碳微乳液吸收劑對(duì)甲苯的吸收性能。當(dāng)實(shí)驗(yàn)時(shí)間<1500 min,甲苯濃度<4000 mg/m3,處理容量為 1-2 m3/(kg·h)時(shí),甲苯的凈化率大于 90%。楊驥等用質(zhì)量分?jǐn)?shù)為 1%的 NaOH 與 1%洗滌劑的混合液為吸收液,測(cè)定其對(duì)油煙的凈化率。實(shí)驗(yàn)發(fā)現(xiàn)當(dāng)吸收塔填料高度為 5-6 cm,淋洗量為300ml/min 時(shí),凈化效率達(dá)到 80%以上。但連續(xù)使用 3d,每天使用 1h 后,吸收液會(huì)出現(xiàn)渾濁、絮凝的現(xiàn)象。
為進(jìn)一步提高吸收效率,研究人員也進(jìn)行了大量實(shí)驗(yàn),嘗試開(kāi)發(fā)新型吸收設(shè)備,其中超
重力旋轉(zhuǎn)填料床是目前較為典型的一種新型吸收技術(shù)。劉海弟[36]等用不同種類的吸收液,研究旋轉(zhuǎn)填料床對(duì)油煙的吸收性能。結(jié)果表明,當(dāng)以0.2%的十六烷基三的甲基溴化銨(CTAB)水溶液為吸收液,旋轉(zhuǎn)床轉(zhuǎn)速為 900-1000 r/min 時(shí),油煙凈化效率接近 80%,同時(shí)也有效證明了超重力技術(shù)可以顯著提高氣體在介質(zhì)中的傳質(zhì)速率。張秀東研究超重力油煙凈化設(shè)備的凈化效率并考察不同濃度的堿性吸收液的吸收性能。結(jié)果表明,當(dāng)堿性溶液濃度為5%時(shí),在超重力因子β為257,氣液比為600的條件下,油煙凈化率能達(dá)到92%。吸收法凈化效率較高,并可回收利用廢氣中的有用物質(zhì)。但吸收設(shè)備占地面積大,且吸收廢液的處理并沒(méi)有規(guī)范合理的方法,易產(chǎn)生二次污染,在油煙凈化行業(yè)也未大力推行。
2.2 破壞技術(shù)
2.2.1生物降解法
生物降解法是涉及氣、液、固三相及生化降解的過(guò)程,影響因素較多,國(guó)內(nèi)主要集中在優(yōu)勢(shì)高效菌種的篩選、填料性質(zhì)的研究及工藝的研究等,但其相關(guān)研究和實(shí)際應(yīng)用還并不多。在實(shí)驗(yàn)室規(guī)模上,馬紅妍利用生物降解法,從被油煙長(zhǎng)期污染的土壤中篩選出混合菌株作為掛膜微生物,選用玉米芯為填料進(jìn)行油煙凈化實(shí)驗(yàn)。結(jié)果表明在系統(tǒng)運(yùn)行穩(wěn)定后,在保證降解率和排放濃度兩項(xiàng)指標(biāo)的前提下,油煙廢氣進(jìn)氣濃度低于40.0 mg/m3 時(shí),出氣濃度可達(dá)到 0mg/m3,此時(shí)油煙廢氣去除率保持在90%以上。廖雷等通過(guò)活性污泥馴化,對(duì)烹飪煙霧中污染物的生物降解性進(jìn)行了研究。結(jié)果表明,在進(jìn)氣口溫度為 50-70℃,油煙濃度低于33mg/L時(shí),凈化率為80%以上。
劉超等利用馴化成熟的活性污泥進(jìn)行油煙生物降解的研究。結(jié)果顯示,初始階段36h內(nèi)液相油煙濃度由32.11 mg/L 迅速降至14.45 mg/L,比降解速率為0.001699 h-1,降解率可維持在80%以上。然而隨著降解時(shí)間的增加,比降解速率逐漸減小至0.000447 h-1,說(shuō)明油煙濃度過(guò)低時(shí),不足以提供微生物營(yíng)養(yǎng),導(dǎo)致降解速率降低。
生物降解法設(shè)備簡(jiǎn)單,油煙凈化效率較高。但易受溫度、進(jìn)氣流量等影響,降解效率下
降。目前,也尚未在油煙凈化行業(yè)較多應(yīng)用。
2.2.2催化燃燒法
近年來(lái),大量研究集中于通過(guò)催化氧化對(duì)揮發(fā)性有機(jī)化合物進(jìn)行降解。一般來(lái)說(shuō),在這
些過(guò)程中使用的兩種基本類型的催化劑:負(fù)載貴金屬催化劑和過(guò)渡金屬氧化物。貴金屬基催
化劑有 Pt、Pd、Au 等,由于其*的活性和易于再生而得到研究。然而,其應(yīng)用受到高成本、熱穩(wěn)定性差等限制。近年來(lái),過(guò)渡金屬氧化物催化劑由 Cu、Co、Ce 等元素組成。因具有較高的催化活性和良好的熱穩(wěn)定性,被認(rèn)為是貴金屬催化劑的合適替代品。表 3總結(jié)了近年來(lái)用于催化降解油煙VOCs的金屬催化劑。
表 3 不同金屬催化劑的油煙凈化率
近年來(lái),對(duì)于負(fù)載型金屬催化劑的研究越來(lái)越多。金屬載體的負(fù)載方式和種類不同都會(huì)對(duì)催化劑的穩(wěn)定性和活性產(chǎn)生影響。柯琪等采用等體積浸漬法,在γ-Al2O3 材料上負(fù)載不同含量的CuO 制備了一系列CuO/γ-Al2O3 催化劑并考察其對(duì)對(duì)油煙催化性能。結(jié)果顯示,當(dāng)催化劑載體負(fù)載20%的氧化銅,氣體流量為5 L/min,催化溫度 350℃時(shí),對(duì)油煙廢氣凈化率可達(dá)88.6%。而邱晉卿以γ-Al2O3 為載體制備 La0.8Sr (0.2) MnO3/γ-Al2O3 催化劑并利用自制的油煙裝置測(cè)試其催化效果。當(dāng) La0.8Sr (0.2) MnO3 的負(fù)載量為 20%,催化溫度為250℃時(shí),油煙凈化效率達(dá)97.3%。
金屬載體的負(fù)載量和促進(jìn)劑的添加也會(huì)對(duì)催化劑的穩(wěn)定性和活性產(chǎn)生影響。左樂(lè)[以γ-Al2O3 為載體,制備一系列負(fù)載量不同的La0.8Ce0.2CoO3/γ-Al2O3 催化劑。負(fù)載量為30%的La0.8Ce0.2CoO3/γ-Al2O3 催化劑在催化溫度為 300℃時(shí),油煙廢氣的凈化效率高為 88%,但對(duì)于苯系物質(zhì)并不能*降解。王建以摻雜不同 Mn 含量(0~40%)的 Ce0.5–xZr0.5–xMn2xO2為載體,制備一系列新型催化劑并測(cè)試其對(duì)烹飪油煙的催化效果。結(jié)果表明,當(dāng) Mn 含量20%(X=0.1)時(shí)制備的 Pt/γ-Al2O3/Ce0.4Zr0.4Mn0.2O2催化劑催化性能較好,油煙*轉(zhuǎn)化溫度僅為222℃。Yang 等以 Al2O3 為載體,MnO2/CuO為原料,研制了一種新型催化劑并測(cè)試其對(duì)油煙的凈化效果。實(shí)驗(yàn)表明,催化劑 MnO2/CuOAl2O3與油煙廢氣接觸時(shí)間小于1s,可以礦化大多數(shù)有機(jī)物。當(dāng)接觸時(shí)間延長(zhǎng)至 3.18 s,可以在 200℃的低溫下實(shí)現(xiàn)96%的凈化效率。催化燃燒法是目前控制末端 VOC 排放的最有前途的方法之一。催化燃燒法可以有效處理中、低濃度的VOCs,在相對(duì)較低的溫度下實(shí)現(xiàn) VOCs 的分解,減少二次污染。因此,對(duì)于催化劑的設(shè)計(jì)和制備的研究仍是當(dāng)下的熱點(diǎn)問(wèn)題。
2.2.3低溫等離子體技術(shù)
低溫等離子體已被報(bào)道為一種非常有效的VOCs分解方法,它可在短停留時(shí)間內(nèi)實(shí)現(xiàn)高電子能量,使VOCs化學(xué)鍵斷裂,達(dá)到凈化效果。常用于VOCs降解的低溫等離子體放電方式可以分為:滑動(dòng)電弧放電、電暈放電、輝光放電、介質(zhì)阻擋放電等。吳蕭等分別測(cè)定不同介質(zhì)阻擋放電反應(yīng)器對(duì)烹飪油煙中三種典型 VOCs(苯和乙酸乙酯和二氯甲烷)的凈化率。結(jié)果表明,低溫等離子體法對(duì)鹵代烴降解效果較好,而芳香烴相對(duì)較難;無(wú)論工藝條件如何,與單介質(zhì)反應(yīng)器相比,雙介質(zhì)反應(yīng)器對(duì)三種有機(jī)物的降解效果較好。以苯為例,當(dāng)雙介質(zhì)反應(yīng)器放電功率為63.9 W,混合氣體濃度低于 696 mg/m3,氣體流速為 100 L/h 時(shí),有機(jī)物的降解率在 90%以上。Holzer F 等以低 ppmv 濃度的 2-甲基吡嗪、壬醛、反式-2-壬烯醛等為目標(biāo)混合物,分別研究其在不同環(huán)境條件下(潮濕空氣和氧氣、氬氣混合物)低溫等離子體的氧化。結(jié)果表明,在 25 kV 電壓下,與氧氣和氬氣混合物條件相比,潮濕空氣下O3 和 CO 產(chǎn)生濃度較低,分別為2100 ppmv 和50ppmv,并且對(duì)CO2選擇性較高,轉(zhuǎn)化率可達(dá)到92%。該實(shí)驗(yàn)證明了低溫等離子技術(shù)作為降解烹飪產(chǎn)生的VOCs的潛力,提出了等離子體催化與等離子吸附的方法設(shè)想,為后續(xù)實(shí)驗(yàn)研究提供了新思路。
低溫等離子體技術(shù)在操作方便、能耗低、氧化降解活性高等方面表現(xiàn)出巨大的優(yōu)勢(shì)。但該技術(shù)高效處理的同時(shí),易導(dǎo)致二次產(chǎn)物的形成、能源效率較低,甚至增加了氣體總毒性。因此,該技術(shù)仍需進(jìn)一步優(yōu)化。
2.2.4復(fù)合技術(shù)
?等離子體–催化技術(shù)
等離子體–催化技術(shù)副產(chǎn)物的形成和低能量效率限制了等離子體技術(shù)的應(yīng)用。為解決該問(wèn)題,可以采用等離子體–催化技術(shù),催化劑的加入可以有效地提高系統(tǒng)效率,特別是對(duì)于低濃度的 VOCs 降解。圖 4 為 VOCs 在等離子體–催化系統(tǒng)中可能發(fā)生的降解機(jī)理[51]。催化反應(yīng)的兩個(gè)重要模型是活 性 位 點(diǎn) ( Langmuir-Hinshelwood ) 模 型 和 氣 固 界 面 ( Eley-Rideal )模型 。Langmuir-Hinshelwood 機(jī)制是類似活動(dòng)位點(diǎn)上兩個(gè)吸附分子之間的表面反應(yīng);Eley-Rideal機(jī)制是吸附分子和氣相分子之間的反應(yīng)[52]。放電產(chǎn)生的活性粒子和 VOCs 吸附在催化劑表面,在兩種模型下發(fā)生反應(yīng),將 VOCs 及其中間產(chǎn)物降解,減少副產(chǎn)物生成。
圖 4 VOCs 在典型低溫等離子體?催化體系內(nèi)的降解機(jī)理
Li 等用等離子體-催化法分別用于乙醛和苯的降解。結(jié)果表明,單一的介質(zhì)阻擋放電法對(duì)乙醛和苯的去除率分別達(dá)到 62.0%和 39.1%,同時(shí)產(chǎn)生了一些毒性副產(chǎn)品和有機(jī)物中間體,如 NOx、O3 等。特別是,O3 的形成可以達(dá)到 180 ppmv 以上。而反應(yīng)器中引入 Co–OMS-2催化劑后,乙醛的去除效率可保持在 100% ,并且避免了 O3 副產(chǎn)物的形成。Y.S.Mok 等采用γ-Al2O3 顆粒填料的介質(zhì)阻擋放電反應(yīng)器處理氣態(tài)甲苯。研究表明,將吸附甲苯后的γ-Al2O3 顆粒填料通過(guò)反應(yīng)器,甲苯可被氧化為 CO和 CO2,并觀察到在140w高放電功率下,CO和CO2的濃度下降得更快,可用于氧化吸附甲苯的活性物質(zhì)增多。CO和CO2的排放在大約10 min 內(nèi)完成。在 10 min 中輸送到反應(yīng)器的電能約等于 84000J,計(jì)算出處理甲苯的能量產(chǎn)率可達(dá)到 41.2 J/μmol。
Yao等通過(guò)共沉淀法制備三種不同的堿改性Co-Mn 催化劑,并將其用于等離子體催化系統(tǒng)中己醛(油煙代表物)的去除。實(shí)驗(yàn)表明,將未改性的 Co-Mn 催化劑放入系統(tǒng)中,該催化劑在短時(shí)間內(nèi)(60 min)吸附己醛達(dá)到飽和。而改性后的 CoMn-Na 催化劑則在570 min后達(dá)到吸附飽和,同時(shí)將已吸附飽和的 CoMn-Na 催化劑放入等離子體反應(yīng)器中,整個(gè)系統(tǒng)在體積空速為 47700 h-1時(shí),對(duì)己醛的去除率為99.4%,同時(shí)與其他兩種催化劑相比,Na 改性催化劑的CO2選擇性也提高了75.4%。這項(xiàng)實(shí)驗(yàn)證明了等離子體催化系統(tǒng)是去除己醛的一種高效方法,也可應(yīng)用于實(shí)際應(yīng)用。
2)低溫等離子體–光催化技術(shù)
低溫等離子體與光催化協(xié)同的復(fù)合技術(shù)目前還在進(jìn)行技術(shù)開(kāi)發(fā)和試驗(yàn)研究,并未產(chǎn)量化。等離子體和光催化處理相結(jié)合,可提高光催化劑表面的電子激發(fā)速率,進(jìn)一步促進(jìn)光催化劑的催化效果,同時(shí),也有望解決次級(jí)產(chǎn)物形成的問(wèn)題。
Sun 等以活性炭纖維為載體,二氧化鈦(TiO2)為原料制備一種改性光催化劑并考其在等離子體反應(yīng)器中對(duì)甲苯的降解效果。結(jié)果表明,與單一等離子體反應(yīng)器的凈化效率相比,等離子體驅(qū)動(dòng)的光催化系統(tǒng)能顯著提高甲苯的去除效果。在放電電壓為10 kV 時(shí),凈化效率提高 16%,達(dá)到80.91%。黃海保[58]在穩(wěn)定狀態(tài)下,向等離子體余輝區(qū)引入U(xiǎn)V、UV/TiO2和TiO2,研究同時(shí)去除甲苯和O3的效率。結(jié)果表明,引入 UV/TiO2后,對(duì)甲苯的凈化率達(dá)到 82.2%,O3 去除率為90%。與單一等離子體技術(shù)相比,甲苯和 O3的去除率分別提高了80%和 87%。低溫等離子體與光催化技術(shù)不僅有效提高了甲苯和 O3的凈化率,也證實(shí)了 O3作為活性氧的前驅(qū)體在甲苯的分解當(dāng)中起到了非常重要的作用。
3)熱催化–光催化技術(shù)
Kong 等分別測(cè)試了Pt/SrTiO3-x 催化劑在不同條件下對(duì)苯、甲苯和二甲苯的催化性能。其反應(yīng)機(jī)理如圖 5 所示。結(jié)果發(fā)現(xiàn)光熱催化協(xié)同氧化在可見(jiàn)光照明,溫度為±150°C 時(shí),催化劑 Pt/SrTiO3-x 活性和穩(wěn)定性更高。在初始濃度均為 500ppm時(shí),甲苯的礦化在反應(yīng) 2 h后可以達(dá)到95%以上,苯和二甲苯的礦化在反應(yīng)時(shí)間 4 h后也均超過(guò)95%。
圖 5 光催化 VOCs 在 Pt/SrTiO3-x 上氧化的原理圖